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Note

On the Numerical Evaluation of the Ordinary Bessel Function of
the Second Kind

1. INTRODUCTION

1.1. Definitions and Relevant Properties
The ordinary Bessel function of the first kind
_ .y (=2%4)*
J(2) = (z/2) ). To C kT Ik (1.1)

k=0

and the ordinary Bessel function of the second kind
Y,(2) = [cos v J(2) — J_,(2)]/sin vor (1.2)
are two linearly independent solutions of the difference equation
Joa — @[2) [, + fos = 0. (1.3)

This equation can be used to compute Y,,, for n = 2, 3,... when Y, and Y,,, are
given. In the forward direction the recurrence formuia (1.3) for Y, is numerically
stable, whereas it is unstable for J, (see Gautschi [1]).

The ordinary Bessel functions of the third kind are the Hankel functions

H®(2) = J(2) + iY(2), HP(2) = J(2) — iY,(2). (1.4

Important for the representation of the Hankel functions for large | z| are the
functions P(v, z) and Q(v, z) defined by

H3(z) = [2/(m2)]'? ex*[P(v, z) £ iQ(v, 2)], (1.5)
where the + sign is used for H'", the — sign is used for H® and
X =z —mQv + 1)/4, (1.6)
For large | z |, P and Q are slowly varying and the oscillatory behavior of " and
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H'® is contained in the exponential function in (1.5). From (1.4) and (1.5) we
obtain

Y,(2) = [2/(m2)]'/2 [P(v, 2) sin x + Q(v, 7) cos x]
Jfz) = [2/(@2)} " [P(v, z) cos x — Q(v, 2) sin x].

Again, the oscillatory behavior of J, and Y, is fully described by the circular
functions in (1.7).

The connection between the ordinary Bessel functions and the modified Bessel
functions follows from

(1.7)

HY(z) = —2im~te~ 2K (ze7i7/?) (—%m <argz < m),
HO(Z) = 2imtermi 2K (zein/2) (—m < arg z < im). (1.8)
From the Wronskian
Joni(z) Y(2) — J(2) Y,a(2) = 2/(m2)
and (1.7) it easily follows that
P,2) P+ 1,2) +-Q(v,2) Q(v + 1,2z) = 1. (1.9)

1.2. Contents of the Paper

We give algorithms for the computation of ¥, and Y,,, and we use the methods
of our previous paper on the computation of K, and K,,, (see Temme [6]). Our
results in [6] can be used for complex values of z. Here we give the explicit results
for Y, and Y,,, and these results follow immediately from [6] by using (1.8).

For the computation of J, the reader is referred to Gautschi [1], where an
algorithm is given for the computation of J, . (2), n =0,1,2,..,N. See also
Gautschi [2}. In Luke [4] rational approximations for J, and Y, are given based
on Padé-representations for large | z | . In Luke [5] a double series of Chebyshev
polynomials and values of the coefficients are given for both Y, J, for z > 5. In
Goldstein and Thaler {3] the computation of Y, is based on series expansions in
ordinary Bessel functions of the first kind, but the treatment of small | v |-values
is not satisfactory.

2. Tae COMPUTATION FOR SMALL |z |

In order to obtain a more symmetric representation in (1.2) we write

cos vir J(2) — J_(2) = J(2) — J_,(2) — 2 sin%(vn/2) J (2). 2.1
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Furthermore we introduce the following notation
¢ = (—2%/4)* [k,
pr = (vfsinvm) (z/2)~|Tk + 1 —v),
g, = (v/sinvm) ([2P/T'(k + 1 +v),
Jio = (b — q)/vs
g =Ji + vt sin¥(vmr(2) gy,
hy = —kgy + p,

where k = 0, 1,.... We have for k = 1, 2,... the recurrence relations

DPr = Pr/tk — v), g3 = Guy/(k + V),
fio = kfyy + Pry + gu)/(K2 — V).
Substitution of (1.1) in (1.2) and using (2.1) yields

Y(z) = — i Cx 8x - 2.2)

k=0
Considering (2.1) with v replaced by v + 1 and using (1.3) we have

COS(V + 1) T Jv+1(z) - J—v—l(z)
= —[J,11(2) — Iy (@] + (2v/z) J_(2) + 2 sin?(v7/2) T, 4(2).
We obtain by substitution of (1.1)

Yon@) = — @) Y, cuh. @3)

As in [6], f; can be represented in such a way that it can be computed with a
satisfactorily small relative error.

For small values of | z | the series in (2.2) and (2.3) converge rapidly. But cancel-
lation may occur in summing the series numerically. A strict error analysis, as for
the modified Bessel function, can not easily be given, but from numerical experi-
ments it turns out that for | z | << 3 the computation is stable.

3. THE COMPUTATION FOR [z ]| =3

For | z| = 3 we compute P(v, z), P(v -+ 1, z), Q(», z) and O(v + 1, z), by using
the functions k,(z) introduced in our previous paper [6]. For X, and K, , we needed
ko(z) and ky(z). From (1.8) it turns out that for the P- and Q-functions the func-
tions ky(4-iz) and k,(3-iz) can be used. The application of the method in [6] is
straightforward. However, the determination of the starting index N for the Miller
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algorithm caused some trouble, since our error analysis in [6] was based .on the
case of real variables. But trying out the results of [6] for the P- and Q-functions
we noticed that the determination of the starting index N can indeed be based upon
the estimations given in [6].

4. ALGOL 60 PROCEDURES

The algorithms for the computation of Y,(z) and Y, ,,(z) are given as an ALGOL
60 procedure for the case of real values of v and z, z > 0. For convenience we
write v =g and z = x.

The procedure bessya computes for x > 0 and a € R the functions Y,(x) and
Yo,1(x); bessya calls for three nonlocal procedures sinh, recip gamma, and
besspga. For the text of sinh, and recip gamma the reader is referred to [6]. In
besspqa the functions P(a, x), P(a + 1, x), O(a, x) and Q(a + 1, x) are computed.
We supply besspga as a separate procedure since it can also be used for the com-
putation of the Bessel functions J,(x) and J,,(x) (see (1.7)). In bessya the procedure
besspga is called for x >> 3 and | a | < .5, but the algorithm in besspga converges
for all x and a (x > 0). It is recommended, however, to take x > max(j a |, 3).
For | a| > x the recurrence relations

Pla+1,x) = Pla— 1, x) — 2a/x Q(a, x)
Qa + 1, x) = Qa — 1, x) + 2a/x P(a, x)

can be used. These relations are valid for real a and x. They can be derived by
substitution of (1.5) in (1.3). However, for | a | 4 1> x, computation of J,(x) and
J,.1(x) by using (1.7) will cause a loss of correct significant digits.

The precision in the procedures bessya and besspga can be controlled by using
the variable eps. For besspqa its entry value corresponds to the desired relative
accuracy in pa, pa l, ga and qa 1. Also in bessya it corresponds to relative accuracy,
except in the neighborhoods of zeros of Y,(x) or Y,,,(x). In that case ya or ya 1 are
given with absolute accuracy eps.

The procedures bessya and besspga were tested on the CD CYBER 73 of SARA,
Amsterdam. For ¢ =0,0.2,04,x = .5,1,2,3,5,7, 10, 20, 50, 100 and eps =
1015 we checked relation (1.9). The output of | pa.pa 1 + ga.gal — 1| is given in
Table 1. The procedure bessya was also tested in the neighborhood of x = 3. For
xt =3 -+ 274 we computed the numerical values of the expressions

dy = {Yo(x7) — Yo(x")},
dy = {Ygua(x?) — Yoru(xh)}

In Table II we give d, , 4, , the maximum number of terms (n) used in (2.1), and the
starting index N for the Miller algorithm.
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TABLE I
a
:\ 0.0 0.2 0.4
0.5 1.4, — 14 7.1y — 15 0.0,, + 00
1.0 0.0, + 00 7.0y — 15 7.1 — 15
20 71y — 15 2.8, — 14 71,0 — 15
3.0 7.1y — 15 0.0,, + 00 0.05 + 00
5.0 Ty — 15 1.4, — 14 0.0, + 00
7.0 710 — 15 Tl — 15 1.4y, — 14
10.0 7.1 — 15 7.1y — 15 70y — 15
20.0 0.0,, + 00 71y — 15 0.0, + 00
50.0 2.1, — 14 1.4, — 14 0.0,, + 00
100.0 2.1 — 14 Ty — 15 7.1y — 15
TABLE 11
eps 5.0, ~ 06 5.0, — 09 5.0, — 12 5.0, — 14
a
0.0 do 5.2, — 08 43, — 11 34, — 14 53— 15
d1 6.4, — 08 1.8, — 11 3.6, — 14 53,0 — 15
(n, N) o, 17 (11,37) (13, 64) (14, 87)
0.2 do 4.8,, — 08 5.3, — 11 5.0, — 14 1.8, — 15
d1 9.4, — 08 4.9,, — 11 22, — 14 1.3, — 14
(n, N) ©,17) (11, 36) (13, 63) (14, 86)
0.4 do 6.8,0 — 09 22, — 1 2.1, — 14 8.9, — 15
d1 2.3, — 08 1.1 — 10 2.5, — 14 2.3, — 14
(n, N) (10, 15) (11, 33) (13, 59) (14, 81)
0.6 do 2.0, — 07 8.2, — 12 3.4, — 14 1.6 — 14
dl 9.9, — 08 4.8, — 11 1.6 — 14 24, — 14
n, N) (8, 15) (11, 33) (13, 59) (14, 81)
0.8 do 3.5, — 08 4.7 — 12 4.1, — 14 1.1, — 14
d1 5.7, — 08 4.7, — 11 0.0, + 00 2.1, — 14
(n, N) ©,17 (11, 36) (13, 63) (14, 86)
1.0 do 6.410 — 08 1.8, — 11 3.2, — 14 3.650 — 15
dl 9.5,0 — 08 5.5, — 11 71y — 15 1.4, — 14
, N) ©,17) (11, 37 (13, 64) (14, 87)
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procedure bessya(a,x,eps,ya,yal); value a,x,eps; real a,x,eps,ya,yal;

begin real b,c,d,e.f.g,h,p,pi,q.r.s; integer n,na; Boolean rec, rev;
pi:= 4 X arctan(l); na:= entier(a+.5); rec:=a = .5;
revi=a << —.5; if rev v rec then a:= a—na;

if a = —.5 then
begin p:= sqrt(2/pi/x); f:=p X sin(x); g:= —p X cos(x) end else
if x << 3 then

begin b:= x/2; d:= —In(b); e:= a X d,
c:= if abs(a) << 19—15 then 1/pi else a/sin(a X pi);
s:= if abs(e) < 1o—15 then 1 else sinh(e)/e;
e:= exple); g:=: recip gamma(a, p, q) X e; e:= (e + 1/e)/2;
fi=2XcxXx(pXe+qgXsxd,e=aXa
pi=g X c¢; q:=1/g|pi; c:= a X pil2;
ri=if abs(c) << ;0—15 then 1 else sin(c)/c; ri=pi X ¢ X r X r;
c:=1;d=—b X b;ya:=f+r X q;yal.:= p;
for n:= 1, n + 1 while
abs(g/(1 4 abs(ya))) + abs(hj(1 + abs(yal))) > eps do
begin f:= (f X n +p 4+ q)/(n X n —e); c:=c X d|n;
pi=pln —a); ¢:= q/(n + a);
g=cX({(f+rxqgyhi=cxp—nxg;
va:=ya + g;yal:=yal + h
end;
fi= —ya; g:= —yallb
end else
begin b:= x — pi X (a + .5)/2; c¢:= cos(b); s:= sin(b);
d:= sqrt(2/x/pi);
besspqa(a,x.eps,p,q,b,h);
fi=dx(pXs+qgxehg=dxhxs—bxc)
end;
if rev then
begin x:= 2/x; na:= —na — 1;
for n:= 0 step 1 until nq do
begin i:=x X (@ —n) X f— g, gi=f, fi=hend
end else if rec then
begin x:= 2/x;
for n:= 1 step 1 until na do
begin i:=x X (a+n) x g —f;f:=g;g:=hend
end;
ya:=f;yal:=g
end bessya;
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procedure besspqa(a,x.eps,pa,qa,pal,qal); value a,x.eps;
real a,x,eps,pa,qa,pal qal;
begin real b,c,d,e, [.2,p,00,4.90,r,s; integer n,na; Boolean rec,rev;
revi=a < —.5;if rev then g:= —a—1;
rec:= a == .5; if rec then
begin na: = entier(a+.5); a:= a — na end,;
if a = —.5 then
begin pa:= pal:= 1; ga:= gal:= 0 end else
begin c:= .25 —a X a; b:=x + x; p:=4 X arctan(l);
e:= (x X cos(a X p)lplepsN2; pi=1;q:= —x; ri=5:1=1+ x X x;
forn:=2,n+ lwhiler Xnxn<edo
begin d:=(n — 1 + ¢/n)/s; p:=2 X n —p X d)f(n + 1);
g=(—b+gxd)fn+1)ys:=pXp+gXqgr=rxs
end;
fr=p:=pls; g:= q:= —qls;
for n:=n, n — 1 while n > 0 do
begin r:= (n+1) X 2p)-2;s:=b + (n+1) X g;di= (-1 + c/n)/
(rxr4+sxs;p=dxr;q=dXxXs;,e=f,;
fi=px(e+)—gxXqgg=qgxe+1)+pXg
end;
fi=l+fid=fxf+gxg
pa:=fld, ga:= —gld; d:=a + .5 — p; qg:= q + x;
pal:= (pa X ¢ — qa x d)/x;
qal:= (ga X q + pa X d)/x
end;
if rec then
begin x:= 2/x; b:=(a + 1) X x;
for n:= 1 step 1 until na do
begin p0:= pa — gal X b; q0:= ga + pal X b;
pa:= pal; pal:= p0; qa:= qal, gal:= q0; b:=b + x
end
end;
if rev then
begin p0:= pal; pal:= pa; pa:= p0;
¢q0:= qal; qal:= qa; qa:= q0
end
end besspga;
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